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20 Abstract
21 The explosion of the Deepwater Horizon (DWH) oil drilling rig resulted in the release of
22 crude oil into the Gulf of Mexico. This event coincided with the spawning season of the
23 Eastern oysterCrassostrea virginica. Although oil bound to sediments constitutes an
24  important source of polycyclic aromatic hydrocarbon (PAH) exposure to benthic organisms,
25 toxicity of sediment-associated DWH oil has not been investigated in any bivalve species.
26 Here, we evaluated the sublethal effects of acute exposure of gametes, embryos and veliger
27 larvae of the Eastern oyster to different concentrations of unfiltered elutriates of sediment
28 contaminated with DWH oil. Our results suggest that gametes, embryos and veliger larvae are
29 harmed by exposure to unfiltered elutriates of contaminated sediment. Effective
30 concentrations for fertilization inhibition were 40.6 pg tPAH5bdnd 173.2 ug tPAH50t
31 for EC2Q, and EC5@, values, respectively. Embryo exposure resulted in dose-dependent
32 abnormalities (EC20 and EC50 values were 77.7 ug tPAH5@rid 151 pg tPAH50 1,
33 respectively) and reduction in shell growth (EggOvalue of 1180 pg tPAH50 ).
34 Development and growth of veliger larvae were less sensitive to sediment-associated PAHs
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compared to embryos. Fertilization success and ratadity of larvae exposed as embryos
were the most sensitive endpoints for assessingatieity of oil-contaminated sediment.

Bulk of measured polycyclic aromatic hydrocarborerevsediment-bound and caused toxic
effects at lower tPAH50 concentrations than higergm water accommodated fractions
(HEWAF) preparations from the same DWH oil. Thigdst suggests risk assessments would

benefit from further study of suspended contamihatrliment.

Summary:
Unfiltered sediment elutriates had negative effectearly life-stage oysters. Fertilization and

embryogenesis were the most sensitive endpoints.

1. Introduction

The explosion of the Deepwater Horizon (DWH) oilllohg rig resulted in a deep
(approximately 1500 m) subsurface release of amattd 507 million liters of Louisiana
crude oil into the Gulf of Mexico (GoM) from Apr20" until July 15" 2010 (Operational
Science Advisory Team, 2010; U.S. District Couf12). This led to the largest marine oll
spill in United States history (National Commissi@®910). Although fractions of this oil
were burned, skimmed from the surface, or chenyicdlspersed (Operational Science
Advisory Team, 2010), some surface slicks were wdsalong shorelines of Louisiana,
Mississippi, Alabama, and Florida (Michel et alQ13; Nixon et al., 2016); and some oil
fractions settled onto sediments of the northerM@@d/ang and Roberts, 2013). Oil remains
in sediments for years or decades (Liu et al., 202, 1979; Silliman et al., 2012; Turner et
al., 2014) and oil accumulated in sediment padi@rhibits slow weathering, which affects
the chemical composition and toxicity of the oilrBnon et al., 2006; Di Toro et al., 2007;
Forth et al., 2017; Liu et al., 2012). Aromatic hycarbons, including polycyclic aromatic
hydrocarbons (PAHSs), are considered to be the mastely toxic components of crude oll
(Barron, 1999; Neff, 1985) and oil bound to seditsetonstitutes an important source of
PAH exposure to benthic organisms (Albers, 200¥faee et al., 2007). The contamination
of the water column by sediments occurs by diffisamd when sediments are re-suspended
by natural factors (e.g., bioturbation, storms, eyaide action) and by human activities (e.g.,
dredging activities) (Burgess et al., 1993; Chapretal., 1998; Ciarelli et al., 1999, 2000;
Geffard et al., 2007; Peterson et al., 1996).
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Whole-sediment or unfiltered sediment elutriate.(isediment supernatant) toxicity
tests are commonly used to assess toxicity of amtaminated sediment (contaminated
sediment) and bioassays have been developed tcstigate the biological effects of
contaminated sediments, using amphipods, copepotdgoderms, bivalves, or fish (Brown-
Peterson et al.,, 2014, 2015, 2017; Dubansky et28l13; Geffard et al., 2001, 2007,
Ghirardini et al., 2005; Lotufo et al., 2016; Mad¢tfsenn et al., 1998). While many studies
have investigated impacts of DWH oil exposures @i {Brewton et al., 2013; Brown-
Peterson et al., 2014, 2015, 2017; Dubansky et2813; Echols et al., 2015), mollusks
(Carmichael et al., 201Finch et al., 2016; Langdon et al., 2016; Stefamssoal., 2016;
Vignier et al., 2015, 2016, 2017; Volety et al.,18) corals (Goodbody-Gringley et al.,
2013), arthropod (Echols et al., 2015; Lotufo et 2016; McCall and Pennings, 2012), and
zooplankton (Almeda et al., 2013), there is liftilormation to date on the impact of oiled
sediments from the DWH spill on marine species.dsxpe to DWH-oiled sediment has been
reported to alter normal embryogenesis and larealebpments in fish, such as delayed
hatching and reduced hatching success and growtheirGulf killifish (Fundulus grandis,
Dubansky et al., 2013) and developmental malforonatin zebrafish(¥anio rerio) embryos
(Raimondo et al., 2014). Sediment-associated PAlKS eeduce growth and survival in
Southern flounderRaralichthys lethostigma) juveniles (Brown-Peterson et al., 2015, 2017)
and reduce offspring production, survival and growt benthic amphipodd.€ptocheirus
plumulosus, Lotufo et al., 2016). Composition and toxicity tbie oil deposited in sediments
can be different than in the water column (Branabal., 2006; Di Toro et al., 2007; Forth et
al.,, 2017; Liu et al., 2012). Though benthic orgam are easily exposed to PAHs in
sediment, the effects of DWH-oiled sediment haveé Ibeen investigated in any bivalve
species.

The embryo- and larval-toxicity tests with oystare among the most sensitive tests
for evaluating sediment toxicity to bivalves (Geffaet al., 2002; His et al., 1999; McPherson
and Chapman, 2000; Stefansson et al., 2016). TheefBaoyster ¢rassostrea virginica) is
distributed from Canada, along the East Coast®fuUBA, to the GoM (Galtsoff, 1964). It is
the second most valuable bivalve fishery in the USIMFS, 2010), especially in the GoM,
with total landings of this species in the north&oM representing $74 million in value for
2012 (NMFS, 2012). In addition to its economic #igance, the Eastern oyster is also
ecologically important. It is a keystone speciescivthas been the focus of conservation and
restoration efforts because oyster populations lieained worldwide (Beck et al., 2011;

Kirby, 2004), and so have the ecosystem serviceg pinovide, including improved coastal
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water quality through filtration, and the creatiohcomplex reefs that represent key habitat
for numerous fish, invertebrate, and bird spedseck et al., 2011; Coen et al., 2007; Newell,
2004).

In the northern part of the GoM, oyster spawningss& occurs from mid-spring
through late fall (Ingle, 1951), a period whichrgidled with the DWH-oil spill (April 28
until July 18"). Recent studies have demonstrated an acute toxitiDWH-oil associated
PAHs to gametes, embryos, and larvae of the Eastgster. Surface-collected and
chemically dispersed DWH oil, and dispersant redfesilization success and normal
development and survival of embryos and larvadis species (Finch et al., 2016; Langdon
et al., 2016; Vignier et al., 2015, 2016, 2017;atplet al., 2016). Toxicity on early life stages
(gamete, embryo, larva) can be evidenced withirodr lof exposure at low concentration of
PAHs (< 60 pg tPAH50 T, Volety et al., 2016). The ecological and econahgignificance,
and the sensitivity to pollutants of the Easteristely make it a suitable model species to
investigate the effects of DWH oiled-sediment orlydde stages of bivalve species.

In this study, we investigated i) the sublethakef$ of unfiltered sediment elutriates
contaminated with DWH oil on the fertilization sess and early life stage development and
growth in the Eastern oyster, and ii) determineg tiost sensitive life stages and endpoints

for ecotoxicological assessment of contaminatedrs=at on the Easter oyster.
2. Materialsand methods
2.1. Collection of sediment

Uncontaminated (control sediment) and contaminagstiment were collected for the
Deepwater Horizon Natural Resource Damage Assessment (NRDA) (Krashed., 2015).
Contaminated sediment (LAAR38-B0123-SX401) waseméd in 2011 from a site called
Black Hole, LA (Lat. 29°19'689”N, Long. 89°03'9"\), an area that was classified during
the NRDA as having “Heavier persistent” oiling (Nix et al., 2016). Control sediment
(LAAR42-C0208-SX403) was collected in 2012 fromederence site called Loomis II, LA
(Lat. 29°12'305"N, Long. 89°17'87"W). Sediment swples were collected from the surficial
layer (6-8") with a shovel. Additional informatiorgarding the methodology that field crews
used to collect these sediments is provided in National Oceanic and Atmospheric
Administration (NOAA) DIVER data repository (DIVER015; Krasnec et al. 2015). After

collection, sediment samples were frozen and skippeder chain of custody to the
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laboratory where they were stored at -20°C un&dsal for toxicity testing.

2.2. Sediment characteristics and analytical chemistry of elutriates

After field collection and before toxicity testing, subsample of uncontaminated and
contaminated sediment was sent to ALS Environmefitalso, WA, USA) for chemical
analyses. ALS conducted analyses on PAHs, alkyl Rhologues, and related hetero-
compounds using gas chromatography with low-regmumass spectrometry and using
selective ion monitoring (GC/MS-SIM), based on UEhvironmental Protection Agency
(EPA) Method 8270D. These data were used to cd&ule sum of 50 PAHs (tPAH50)
(Forth et al., 2017). ALS also analyzed subsamfaesther contaminants, including metals
(6010C and 6020A) such as antimony (6020A), silg@d20A), and mercury (7471B);
pesticides (808 IB); and polychlorinated biphenf@#Bs; 8082A). Analyses describing the
physical characteristics of the sediments [totajaaic carbon (TOC; ASTM D4129-05,
2013), particle size (PSEP PS), and total soli&NIET)] were also performed.

For all experiments, temperature, dissolved oxygalinity, ammonia and pH of
elutriates were measured daily using a Pro ODOcqptbe (YSI), a refractometer (Fisher
Scientific), or a “Pinpoint” pH monitor (American &fine, Inc.). At the start and at the end of
each exposure experiment, total ammonia was askassg a Seal Analytical Auto Analyzer
3 and the G-171- 96 method. Water samples of etmtk §100% stock) of unfiltered
sediment elutriate, of the different concentratiohunfiltered sediment elutriates used for
toxicity testing, and of control solutions wereleoted at exposure initiation. Water samples
were not filtered and were stored at 4°C until tlvesre shipped to ALS Environmental
(Kelso, WA, USA) for chemical analysis. tPAH50, weajuantified by gas chromatography

with low-resolution mass spectrometry using selectbn monitoring (GC/MS-SIM).

2.3. Preparation of unfiltered sediment elutriates

Control sediment and contaminated sediment wengatat 4°C for 48 hours before
preparing unfiltered sediment elutriates accordimgnodified protocol from Geffard et al.
(2001). In a sterile glass beaker, UV-sterilized arll pm-filtered seawater, adjusted to 25°C
and 22 PSU (filtered seawater, FSW), was addedotdra sediment or contaminated
sediment in a ratio of 10:1 (i.e.,, 100 g of sedimanxed in 1000 mL of FSW) and

mechanically stirred (300 rpm) for 6 hours usingjiering rod and a magnetic stirrer. After 12
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hours of sediment settling, unfiltered contaminateztliment elutriates were prepared.
Supernatant (100% stock) was siphoned off fromtdpeof the beaker and then mixed with
FSW in a dilution series to nominal concentratiohd00 (no dilution of the stock), 50, 25,
12.5, 6.25, 3.125, and 1.5625% of supernatant.cbmerol sediment elutriate was prepared
following the same methodology as the unfilteredisent elutriates, except supernatant was
not diluted (100% stock used). In addition to tleateol sediment elutriate, a FSW control

(i.e., no sediment) was also tested. Solutiongdinsent were neither filtered nor centrifuged.

2.4. Collection of oyster gametes

OystersCrassostrea virginica were collected in September from natural poputestiio
Estero Bay, Florida (Lat. 26°19'50”N, Long. 81°3"W). Average weight of oysters was
75 £ 20 g. They were kept under natural light ctads and ambient seawater salinity (20-30
PSU) for 2 weeks at 23°C + 1 using a flow-throughtem. Seawater was sand filtered (30-
um). Animals were fed with cultured fresh micro@g@&haetoceros muelleri, Tetraselmis
chui, andTisochrysis lutea) at a daily ration of 3% of oyster dry body weigbt €Eonditioning
(Utting and Millican, 1997). Ripeness of oysterssveetermined by microscopic observation
of gonadal smears. Oocytes and spermatozoa wenairee@ for motility (sperm), shape and
absence of atresia (oocyte), and oysters showingpinre gametes were discarded. For each
ripe oyster, gametes were collected by strippingterygonad with a scalpel in 50 mL of FSW
(Allen and Bushek, 1992). To remove gonadal anckrottssue debris, sperm was sieved
through 55-um mesh and sperm from 3 males wereeddato 500-mL of FSW in a sterile
beaker. Similarly, oocytes from 3 females were pddhto 2 L of FSW in a sterile beaker,
after successive sieving through 150-um and 55-peshnto remove gonadal tissue and
debris, and collection on 20-um mesh. Gamete cdrat@n was determined by microscopic

count using a Sedgewick-Rafferounting cell (3 x 100 pL).
2.5. Sediment elutriate exposure of early life stages
2.5.1. Experimental design
Gametes (oocytes and spermatozoa), embryos, amdelawvere exposed to the

different concentrations of unfiltered sedimenttédes from sediment contaminated during

the DWH oil spill, control sediment elutriate, d8W control (i.e., no sediment).
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Four replicates were set up for each condition.dSypes were conducted at 25 + 1°C
and at a salinity of 21.5 £ 0.5 PSU. Elutriate sohs were not renewed, and no aeration was
provided during the experiment, except for the gatilarval exposure (48-hour exposure):
gentle aeration~ 60 bubble min™) was delivered to maintain dissolved oxygen (DO)

concentrations above 4 mg'L
2.5.2. Gamete exposure

Sperm (2 x 1®spermatozoa nit) and oocytes (20 oocytes fifrom the pools were
exposed separately for 30 minutes to unfilterednsext elutriates, control sediment elutriate,
or FSW. The exposure time was set for 30 minutegémetes since broadcast spawning in
the field allow fertilization to occur quickly afteelease of oocytes and spermatozoa in the
surrounding seawater. After 30 minutes of exposaweytes were fertilized by adding 10 mL
of exposed sperm from corresponding sperm-exposepéicate (same concentration of
unfiltered sediment elutriate for oocytes and sgaxoa, 4 replicates/treatment).

To determine the fertilization success, a 10 muat was subsampled 1 hour after
fertilization from each beaker. Samples were presewith 300 pL of 10% buffered formalin
until later determination of the fertilization sess (number of embryos/initial number of
oocytes). This was determined by counting embrgbaracterized by first cell cleavage at 1-
hour post fertilization, in at least 200 individsigler beaker.

Embryogenesis was assessed 24 hours after feitihzaA 10-mL aliquot was
subsampled from each exposure beaker. Samplespneserved with 10% buffered formalin
for later determination of the percentage of abrabriarval and shell measurements. A
minimum of 100 randomly selected larvae per treatmeere examined under a microscope
to assess the percentage of abnormal larvae afidestggh. About 24 hours after fertilization
at 25°C, embryos develop to veliger-larvae. Abndrtaevae included: (1) segmented eggs,
normal embryos, or malformed embryos that did eaich the veliger-larval stage; and (2)
veliger-larvae with either a convex hinge, indenwtell margins, incomplete shells, a
protruded velum, or an extrusion of mantle as dieedrin Vignier et al. (2015). Only live
abnormal larvae were considered (Chapman, 198%ll 8ngths (the maximum distance
between the anterior and the posterior margin medsparallel with the hinge axis) of 25
randomly selected 24-hour old live larvae from elebker were measured using an Olympus
IX73 inverted microscope equipped with an OlympuB7B camera, and the CellSens

Software.
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2.5.3. Embryo exposure

Remaining unexposed oocytes from the pool of oscf®el ) were fertilized with 20
mL of the pool of unexposed sperm. The successnilifation was confirmed forty-five
minutes later by microscopic examination of thd ctdavage and the number of embryos
was assessed (3 x 50 puL) as previously describ8dadtion 2.5.2. One hour after fertilization,
when the two- to four-cell stage was reached, eotbwere transferred at a density of 15 mL
! (3,000 individuals per beaker) into 200 mL of eacimcentration of unfiltered sediment
elutriates, sediment elutriate control, and FSWrabri4 replicates/treatment). After 24 hours
of embryo exposure, an aliquot was subsampled &aoh beaker and fixed in 10% buffered
formalin for later measurements of the percentdgabaormality and larval shell lengths as
described in section 2.5.2. The exposure time \wa$os 24 hours to allow embryos to reach

the next developmental stage of swimming veligevéa.

2.5.4. Veliger exposure

The remaining fertilized embryos that were not uadthe embryo-toxicity assays
described above were transferred to hatching taakfiaal density of 40 embryos ritlin 50
L of FSW. At 24 hours post fertilization, veligarvae (developed from embryos) were
collected on a 35 pm mesh and concentrated in 3W.F/eliger-larvae were enumerated by
microscopic count and distributed at a density bfidrvae mL* (2,200 larvae/beaker) into
200 mL of the different unfiltered sediment elutel® sediment elutriate control, or FSW
control (4 replicates/treatment). Larvae were fathwultured microalgaeT( lutea) at the
start of the exposure at a concentration of 5%c#lls mL*. After 48 hours of exposure, 10-
mL subsamples were collected from each beaker @aduR of 10% buffered formalin were
added for later measurements of the percentagbrafrenality and shell lengths as described
in 2.5.2. The exposure time was set for 48 hours/étiger-larvae since preliminary range-
finding experiments revealed that development anavil of veliger larvae are less sensitive

to unfiltered sediment elutriate exposure than garaad embryo stages.

2.6. Satistical analyses
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Results are presented as mean + SD. Log-logistidetsowith thedrc package in R
version 3.1.1 (2014) were used to fit dose-respansees (Ritz, 2010; Ritz and Streibig,
2005). A three-parameter log-logistic model wagefdit for binomial response variables
(fertilization, abnormality), while a 4-parametegtlogistic model was fitted for shell length.
We estimated effective concentrations (ECx) fromsthfitted models for relevant quantiles.
All results are reported with 95% confidence ingéds(Cls) based on profile-likelihood using
bbmle (Bolker and R Development Core Team, 2014).

3. Results

3.1. Sediment characteristics and analytical chemistry of elutriates

The chemical and physical characteristics of fiadtlected sediments are listed in
Table 1. Temperature of sediment elutriates rarfgeh 24.2 to 26.4 °C throughout the
exposure experiments. The pH and salinity averdged 0.2 and 24 + 4 PSU, respectively.
Dissolved oxygen remained above 5.0 nig Total ammonia concentrations remained at safe
levels (< 1 mg [Y) (Ferretti and Calesso, 2011; Losso et al., 2007).

The FSW used for the control contained very lovelswf PAHs at background levels
(tPAH50 = 0.08 ug L* + 0.03). The composition of PAHs in the 100% stocksirtfiltered
sediment elutriates were similar among the gametmbryo and larval bioassays.
Additionally, the composition of PAHs in the unéited sediment elutriate was very similar to
the composition of PAHs in the field collected DWtbntaminated sediment (Fig. 1,
Supplementary Table 1), revealing that the PAHgnfiltered sediment elutriates were likely
from PAHs on suspended fine-grained particles ratat PAHs from water accommodated
fractions (Supplementary Fig. 1). PAH concentraiarere higher in higher concentrations of

unfiltered contaminated elutriate (Supplementarglé ).
3.2. Sub-lethal effects on fertilization

Fertilization successes of gametes exposed to F&W-control sediment elutriate
were 90 = 3% and 87 + 6%, respectively. At the bgldose of unfiltered sediment elutriate
tested (152.8 pg tPAH50%) 54 + 3% of the oocytes were unfertilized (Fig. Prtilization
decreased with increasing dose (EG2040.6 pg tPAH50 1 (95% CI =29.8, 54.1), EC50
= 173.2 pg tPAH50 T (95% CI =148.1, 209.6)).
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3.3. Sub-lethal effects on embryogenesis and early larval development

Continuous 24-h exposure of gametes to controlnsexli elutriate induced a high
percentage of abnormal larvae compared to FSW aorRercentage of larval abnormality
was 60.4 + 9.3% and 12.8 + 3.0% in the sedimentriata control and FSW control,
respectively (Fig. 3A), therefore we do not repeffects concentrations for gamete
abnormality.

Embryo exposure resulted in dose-dependent abnitiesal(Fig. 3B). High
percentages of abnormal larvae were observed, 10% of abnormalities at the highest
dose of unfiltered sediment elutriate from contaatex with DWH oil (989.0 pg tPAH50 L
1). Development of veliger larvae was less sensttiveediment-associated PAHs compared to
embryos. After 48 hours of exposure at the higldese of PAHSs, 46 + 7% of the veliger
larvae showed abnormalities (Fig. 3C).

EC20 and EC50 values of observed abnormality imakrcontinuously exposed to
unfiltered sediment elutriate from embryo or velitgrva stages are presented in Table 2.
Abnormality at the highest doses of unfiltered sezht elutriate tested in the veliger exposure

was lower than 50% (Fig. 3C), so we do not repoifE&50 value (Table 2).
3.4. Sub-lethal effects on larval size

The shell length of oysters exposed to FSW- andvest elutriate controls were 65.3
+ 3 and 63.4 £ 3 um, respectively, for 24 hour d&rdeveloped from exposed gametes. The
absence of data at the highest concentration ditenefd sediment elutriate was due to high
mortality. At 72 pg tPAH50 L (i.e., the second highest concentration testedgnnshell
length was 59.8 + 2 um (Fig. 4A).

In the 24h embryo exposures, shell lengths of Emware 71.9 + 3 and 71.4 £ 3 um
for FSW- and sediment elutriate controls, respettivand 58.3 + 4 um at the highest
concentration of unfiltered sediment elutriate ddstin the 48 hour exposures of veliger
larvae, sediment-associated PAHs reduced larvadl lEmgth to 70.7 + 1 um compared to
controls (75.5 + 3 and 73.8 = 3 um for FSW- andrsedt- control, respectively).

Unfiltered sediment elutriate exposure induced aed®sponse decrease in shell
length for larvae developed from exposed embryosh wn EC20s, value of 1180 pg
tPAH50 L* (Fig. 4B). Limited decrease of shell length at ttenge of tPAH50 L

10
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concentrations in elutriates tested did not allbe talculation of EC20 and EC50 values in
the gamete (Fig. 4A) and veliger-larval (Fig. 4@pesures, or the calculation of EC50 in the
embryo exposure (Fig. 4B).

4, Discussion

In the present study, we investigated the sublegfiatts of unfiltered elutriates from
sediment contaminated with DWH oil on fertilizatimuccess, embryogenesis, and larval

development and growth of the Eastern oyster défelgtages.

4.1. Sublethal effects of sediment-associated PAHs on early life stages

Fertilization success was reduced after exposurganfietes to unfiltered sediment
elutriates. Vignier et al. (2015) reported highelues of effective levels of tPAH50 for
inhibition of fertilization for exposure to HEWAHigh energy water accommodated fraction)
prepared from surface DWH oil compared to unfilkesediment elutriates (present study) in
the same species. EGR@nd EC54, values for fertilization inhibition were 1650 a@@50
ng tPAH50 L, respectively, for exposure to HEWAF of DWH oiligvier et al., 2015); and
40.6 and 173.2 pg tPAH50" respectively, for exposure to unfiltered sedimeltriates
(present study). Reduced fertilization successaiflyprelated to the negative effects of oil on
marine bivalve spermatozoa (Renzoni, 1973, 197&H< in DWH-oil induce cellular
alterations in Eastern oyster spermatozoa, incjudihanges in reactive oxygen species
production and mitochondrial membrane potentiagNér et al., 2017; Volety et al., 2016).
These cellular characteristics play a crucial ralefertilizing ability of oyster spermatozoa
(Boulais et al., 2017).

We found that sediment-derived PAHs induced abnbdeaelopment and reduced
shell length in 24-h old larvae developed from esqmb embryos. Similarly, unfiltered
elutriates of PAH-contaminated sediment (freezedisediment from Ares/Bidassoa region
in France, mixing ratio of 4:1 for 8h at 500 rpndasettled for 8h) were reported to cause
significant abnormalities in Pacific oysteCr@ssostrea gigas) 24-h old larvae (EC24, and
EC5Qun values were 5.3 and 22.4 g sedimen} &nd sea urchitParacentrotus lividus) 48-h
old larvae (EC2@, and EC5@s, values were 16.2 and 42.3 g sedimetit developed from
exposed embryos (Geffard et al., 2001). Vignieraet(2015) reported that HEWAFs of

weathered DWH oils inhibit larval development inpesed embryos, though at higher

11
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tPAH50 concentrations than unfiltered sedimentrigtgs in the present study. EG20and
EC5Q4n values for abnormality induction in larvae devetgmt from exposed embryos were
218 and 342 ug tPAH50, respectively, for exposure to HEWAF (water-accardated
fractions) of DWH oil (Vignier et al., 2015); and@.7 and 151 ug tPAH50, respectively,
for unfiltered sediment elutriates (present studggarding shell length, the present study
indicated that exposure to sediment-associated PiAtisced a dose-response decrease in
shell length for larvae exposed as embryos, witEE@2Q4, value of 1180 ug tPAH50t1
Shell length of larvae developed from exposed epwrwas also reduced after a 24-h
exposure to HEWAF of oil collected from the DWH iishent in the Eastern oyster (Vignier et
al., 2015; no calculation of effective concentmasip Similarly, crude oil adversely affected
shell length of developing embryos at an EG50alue of 1000 pg T of oil in seawater in
the surf clam,Mulinia lateralis (Renzoni, 1975). Increased developmental malfdonat
(e.g., hatching success) with exposure to oil-cnitiated sediment was also observed in
embryos of fish, such as the fathead minn&sephales promelas (Colavecchia et al., 2004)
and the zebrafisBPanio rerio (Raimondo et al., 2014; Sogbanmu et al., 2016)céioulation

of effective concentrations). It was suggested AHs impair the mechanism of shell
calcification of newly segmented embryos in the t&ams oyster and could interfere with
protein synthesis, metabolism, and enzymatic aessi(Vignier et al., 2015). Finally, PAH
exposure causes high rates of abnormal larvae & &rand breakage in Pacific oyster
embryos (Wessel et al., 2007). These mechanismsably contribute to the observed
abnormal development and the reduction of shelwtroof Eastern oyster larvae exposed
during the embryo stage to PAHs of unfiltered sexfitrelutriates.

Effects of PAHs on development of larvae exposenhfthe veliger stage have been less
investigated compared to embryogenesis. Geffardl.e2002) reported that Pacific oyster
larval growth was sensitive to unfiltered elutriatef PAH-contaminated sediment after 5
days of exposure at 0.664 pg tPAH12 (12 polycyclic aromatic hydrocarbons analyzed),
but not after 3 days of exposure. Similarly, shetigth of larvae exposed from the veliger
stage for 4 days was inhibited by HEWAF of DWHiaithe Eastern oyster at an EC20 value
of 106 pg tPAH50 [ (Vignier et al., 2016), and water-soluble fracGonf Southern
Louisiana Crude oil affected larval growth (2-ddgt)af the quahog clam (Byrne and Calder,
1977). Effects of PAHs on veliger-larval developmenay be related to their bio-
accumulation in larvae through feeding, which maguice the production of toxic metabolites

during PAH metabolization, such as reactive radiagions (Colavecchia et al., 2004; Geffard
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et al., 2002). Additionally, it was suggested tpatticulate oil could act on gills and velum,
impairing the normal physiology of larvae (Vignetral., 2016).

In the present study, the control sediment el@riatuced abnormalities in 24-h old
larvae developed from exposed gametes. Chemicalsmsadid not reveal any contaminants
(metals, pesticides, PCBs, and tPAH50; Supplemgntable 3) in the sediment elutriate
control but there was a high percentage of fingiglas (i.e., silt and clay, 82%) as elutriates
were neither filtered nor centrifugedarticles in the sediment elutriate control mayehav
impeded early embryogenesis (i.e., embryo exposethgl the first hour post fertilization,
Fig. 3A) without impacting fertilization success datater embryogenesis (i.e., embryo
exposed after the first hour post fertilizationg.F8B). Griffin et al. (2009) found a similar
effect in the Pacific herringClupea pallasi, for which suspended sediment induced
malformations in larvae developed from embryos ergoduring the two first hours of
embryogenesis, but did not reduce fertilizationcegs of exposed gametes or induce larval
malformations in older embryos (> 2-h old embry@3)r results suggest that exposure to fine
particles during the first hour of embryogenesiy wause developmental abnormalities in the
Eastern oyster. Mechanism for this effect of petids not known but could be related to
particles binding to embryo membranes, disturbimg first embryo cleavage (2 to 4-cell
embryo at 1-hour post fertilization in oysters). wéver, because the sediment elutriate
control was not necessarily a perfect represematiothe physical characteristics of the
contaminated sediment, separating the mechanifesdteffrom the toxic effects of oil on this
endpoint was not feasible. Further testing is wded to determine whether particulate alone
may have caused the high rates of abnormality Hm 24d larvae developed from exposed

gametes.

4.2. Toxicity of sediment-associated PAHs compared to HEWAF-derived PAHSs on early life

stages

Material and methods used in the present study hersame as those used in Vignier
et al. (2015), allowing the comparison of effectbmncentrations for inhibition of fertilization
ability, embryogenesis, and larval developmenthef Eastern oyster between HEWAF and
unfiltered sediment elutriate preparations from g@mme DWH oil. Unfiltered sediment
elutriates caused toxic effects at lower tPAH50cemrations than HEWAF preparations for
fertilization success and embryogenesis of expesaoryos. EC20, and EC5@u, values for

abnormality induction in larvae development fronpesed embryos were 218 and 342 pg
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tPAH50 LY, respectively, for exposure to HEWAF (water-accadated fractions) of DWH
oil (Vignier et al., 2015). The increase in toxicin the contaminated sediment elutriate
treatments cannot be explained by the presengeeopéarticles of sediment in the water column
alone as the control sediment elutriate had theesdentilization success and larval
abnormality as the seawater control, but rather tduthe PAHs attached to the fine-grain
particles suspended in the water column. Furthezmfertilization success was higher than
87% and larval abnormality of exposed embryos waeit than 15% in control seawater and
sediment elutriate control. However, we found alimeas-fold higher percentages of 3 ring
PAHs (dibenzothiophenes, DBT4) and 4 ring PAHSs [rlapbenzothiophenes: NBT1, NBT2,
and NBT3) in the composition of unfiltered sedimehitriates used in the present study
compared to HEWAF of DWH oil used by Vignier et @015). This is probably due do the
low water-solubility (Djomo et al., 1996; Porte aAdbaigés, 1993) and high affinity for
organic carbon of these PAHS, resulting in thesaagtion onto sediment particles, possibly
limiting their degradation (Baumard et al., 199Qjbansky et al., 2013; Raimondo et al.,
2014; Turner et al., 2014). Higher toxicity of sednt-derived PAHs compared to HEWAF-
associated PAHs may be related to the greater gimpoof 3 and 4 ring-PAHs in oiled-
sediment elutriates, as it was suggested that higb&ecular weight PAHs are more toxic than
lower molecular weight compounds (Achten et al.13®0 Toxicity of individual PAHs on
oyster early life stages remain unknown and furtieeearch is needed to better elucidate the
higher toxicity of sediment-derived PAHs comparedHEWAF-derived PAHs to Eastern
oyster fertilization success and larval developnfiemh exposed embryos.

4.3. Choice of sensitive life stages for ecotoxicological assessment

The present study reveals that 1-h fertilizatioocess and 24-h abnormality of larvae
exposed as embryos endpoints are more sensitivestigl length (across all bioassays) and
veliger larval abnormality endpoints with respectsediment-derived PAHs in the Eastern
oyster. Fertilization success was reduced at sintéieels of tPAH50 than those affecting
embryogenesis, and both of these endpoints shottealgsdose-dependent response for the
unfiltered elutriates of oil-contaminated sedimeiniglicating that they are both sensitive
sublethal endpoints for assessing the acute tgxidibiled sediment. Advantage for the 1-h
fertilization success endpoint is that this assagonducted over a shorter period of time (i.e.,
few hours) than the embryo abnormality assay. Emdgaising veliger larvae were less

sensitive to sediment-derived PAHs compared toiliftion success and embryo
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development. Although larval abnormality and shetigth of exposed veliger larvae did not
show strong dose-dependent response for concensabi sediment-derived PAHs tested, it
should be noted that larval abnormalities were nsamsitive to sediment-derived PAHs than

larval shell length.

5. Conclusion

In the present study, the effect of unfiltered mdues from sediment contaminated
with DWH oil on the early life stages of a marinedive species were investigated for the
first time. The results of our study indicate tlgaimetes, embryos and veliger larvae of the
Eastern oyster can be adversely impacted by acla¢td to suspended sediments, which
indicates that sediments should also be evaluatddcansidered as a possible contaminant
source for this exposure route. Fertilization sssand 24-h abnormality of larvae exposed as
embryos endpoints were the most sensitive endptontscotoxicological assessment of oil-

contaminated sediment to early life stages ofgpecies.
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Figure captions

Fig. 1. PAH composition of unfiltered sediment elutriateoct and field-collected
contaminated sediment, expressed in %. Avg: Meanposition of tPAH50 of unfiltered
sediment elutriate stock (stock 100%) used for dajrembryo, and veliger acute exposures.

PAH abbreviations are provided in Supplementaryl@ab

Fig. 2. Dose response curve for fertilization success ahetes exposed continuously to
unfiltered elutriates from sediment contaminatedhwiDWH oil. Observed unfertilized
oocytes (in %) were reported 1 hour after ferttima, for 4 replicates per treatment. Modeled
for unfertilized oocytes for unfiltered sedimenutelates was fitted to tPAH50 exposure
concentrations (ug1). Gray filled circles represent sediment elutrietatrol; black filled
circles represent seawater control (on the lefgd anfiltered sediment elutriates. Dose-
response curve was fitted using seawater contlizbintal lines on curve represent 95% CI
of EC20 and EC50.

Fig. 3. Dose response curve for larval abnormality devediojpom (A) gametes, (B) embryos
and (C) veliger-larvae exposed continuously to IterBd elutriates from sediment

contaminated with DWH oil. Observed abnormalities %) were reported after 24 hours of
exposure for gametes and embryos and 48 hours pdsaxe for veliger larvae; for 4

replicates per treatment. Modeled for abnormalifies unfiltered sediment elutriate were
fitted to tPAH50 exposure concentrations (Ug).LGray filled circles represent sediment
elutriate control; black filled circles represemtawater control (on the left) and unfiltered
sediment elutriates. Dose-response curves weegl fittsing seawater control. Horizontal lines
on curves represent 95% CI of EC20 and EC50. (ghHbiercentage of abnormality in larvae
developed from exposed gametes to sediment ekitdantrol did not allow determining

EC20 and EC50 values. (C) Low percentage of abridgnead the highest doses of sediment

elutriate tested in the veliger exposure did nlovathe calculation of EC50 value.

Fig. 4. Dose response curve for shell length of larvaeelbped from (A) gametes, (B)
embryos and (C) veliger-larvae continuously exposedtinuously to unfiltered elutriates
from sediment contaminated with DWH oil. Observéelslengths (in um) were reported
after 24 hours of exposure for gametes and embgs,48 hours of exposure for veliger

larvae; for 4 replicates per treatment. Modeledl dargths for unfiltered sediment elutriate
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were fitted to tPAH50 exposure concentrations ({}y Gray filled circles represent sediment
elutriate control; black filled circles represemiawater control (on the left) and unfiltered
sediment elutriates. Dose-response curves wered fitising seawater control. Limited
decrease of shell length at the range of tPAH3@dncentrations in sediment elutriate tested
did not allow the calculation of EC20 and EC50 ealun the (A) gamete and (C) veliger-

larval exposures, and the calculation of EC50 en(B) embryo exposure.

Tables
Tablel
Chemical and physical characteristics of contameithagediment (Black Hole 2011) and
sediment control (Loomis IlI) used for toxicity tegst Sum of 50 PAHs (tPAH50) is
expressed in mg Kg Total Organic Carbon (TOC) and Total Solids (T&M are expressed
in %. Fines, corresponding to particle size (siltclay), is expressed in %. Fines of

contaminated sediment could not be assessed beafahigh oil content (N/A).

Sediment tvoe  TPAHS0 TOC TS-MET Fines
YPE (mgkg) (%) (%) (%)

Contaminatec 5, 69.9 26.2 N/A

sediment

Sediment control O 0.833 38.0 82.38

Table2

Concentration causing 20% and 50% inhibition (EEZB0) of observed abnormality in
larvae continuously exposed to unfiltered elutsadé sediment contaminated with DWH oil
for 24 hours from embryos, or for 48 hours fromiged. Data are expressed as measured
concentrations of a sum of 50 PAHs (ug tPAH59) for sediment + 95% confidence

intervals. NC: not calculated.

Initial stage Embryo Veliger larva
EC20 77.7 (62.8-96.9) 95.9 (42.3-174)
EC50 151 (134-172) NC
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